September 2007

MADALGO seminar by Jonathan Richard Shewchuk, University of California at Berkeley

Streaming Computation of Delaunay Triangulations

We show how to compute Delaunay triangulations of utterly huge, welldistributed point sets in 2D and 3D on an ordinary computer by exploiting the natural spatial coherence in a stream of points. We achieve large performance gains by introducing "spatial finalization" into point streams: we partition space into regions, and augment a stream of input points with finalization tags that indicate when a point is the last in its region. By extending an incremental algorithm for Delaunay triangulation to use finalization tags and produce streaming mesh output, we compute a billion-triangle terrain representation for the Neuse River system from 11.2 GB of LIDAR data in 48 minutes using only 70 MB of memory on a laptop with two hard drives. This is a factor of twelve faster than the previous fastest out-of-core Delaunay triangulation software.